首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29395篇
  免费   2571篇
  国内免费   2426篇
  2024年   18篇
  2023年   261篇
  2022年   397篇
  2021年   1327篇
  2020年   1000篇
  2019年   1268篇
  2018年   1255篇
  2017年   953篇
  2016年   1307篇
  2015年   1822篇
  2014年   2162篇
  2013年   2381篇
  2012年   2678篇
  2011年   2511篇
  2010年   1639篇
  2009年   1527篇
  2008年   1690篇
  2007年   1511篇
  2006年   1283篇
  2005年   1132篇
  2004年   903篇
  2003年   876篇
  2002年   781篇
  2001年   566篇
  2000年   473篇
  1999年   437篇
  1998年   267篇
  1997年   234篇
  1996年   232篇
  1995年   222篇
  1994年   214篇
  1993年   152篇
  1992年   206篇
  1991年   143篇
  1990年   132篇
  1989年   105篇
  1988年   74篇
  1987年   60篇
  1986年   50篇
  1985年   50篇
  1984年   22篇
  1983年   22篇
  1982年   23篇
  1981年   8篇
  1980年   5篇
  1979年   2篇
  1977年   2篇
  1975年   3篇
  1965年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 668 毫秒
71.
72.
73.
A method for the determination of d- and l-thyroxine in human serum is described. The method involves extraction of thyroxine from serum and the separation of thyroxine enantiomers on a reversed-phase, high-performance liquid chromatographic column by use of a chiral eluent containing l-proline and cupric sulfate. Satisfactory resolution of the enantiomers of thyroxine, triiodothyronine, and reverse triiodothyronine can be achieved in 12 min and, employing amperometric detection to monitor the separation, the detection limit for serum thyroxine is in the range of 1–3 ng per injected sample.  相似文献   
74.
Microfilaments associate with the microvillar membrane of 13762 ascites mammary adenocarcinoma cells via a large transmembrane complex (TMC) comprising the major glycoproteins TMC-gp120, -110, -80, -65, and -55, the receptor kinase p185(neu), and the cytoplasmic proteins actin and p58(gag), linking the receptor with microfilaments in a signal transduction particle. Immunoblot screening with polyclonal antisera to TMC glycoproteins showed selective epithelial expression in normal rat tissues and epithelially derived tumor cells. The TMC glycoproteins were isolated by solubilization of microfilament core preparations in SDS, dilution, and separation on a concanavalin A-agarose affinity column. The large p185(neu)-containing complex was reconstituted from the column eluate after displacement of SDS with nonionic detergent, demonstrated by gel filtration and co-immunoprecipitation of the glycoproteins with anti-gp55 or anti-p185(neu). Exhaustive biotinylation of the glycoproteins gave a stoichiometry of gp120:gp110:gp80:gp65:gp55 of approximately 1:1:1:0.5:1. Overlay blots with biotinylated actin and in vitro translated, [(35)S]methionine-labeled p58(gag), respectively, showed specific interactions of actin with gp55 and gp120 and of p58(gag) with gp65 and gp55. These results provide evidence for a specific complex of microfilament-associated glycoproteins containing p185(neu) and p58(gag) and suggest a role for the complex in signal transduction scaffolding.  相似文献   
75.
76.
A great variety of vertebrate cells contain detectable amounts of lectins, able to stimulate the initiation of cellular DNA synthesis. One of them, sarcolectin (SCL) can block interferon (IFN) action, by inhibiting the synthesis and the expression of the IFN dependent secondary proteins. As a result, the IFN-induced antiviral state is abolished in the cells, which likely facilitates their replication. We identified a major 65 kDa and a minor 55 kDa protein, which could carry these cellular functions. Their purification, especially that of the 65 kDa, was difficult, because of the proximity of albumin. We devised therefore a two-step primary separation, followed by a four-step final purification, which are reported here. The purification was controlled by high pressure liquid chromatography (HPLC), SDS-PAGE electrophoresis and identified by Western blots. We found that only the minor 55 kDa protein can be considered as being sarcolectin, while the major 65 kDa band results from the binding of some SCL molecules to albumin. The major biological functions, namely, stimulation of DNA synthesis and cell agglutination were preserved to the end of the last purification step. This work is requisite for establishing the molecular structure of SCL by recombinant DNA technology.  相似文献   
77.
Weng  Shaoting  Zhao  Yitian  Yu  Changhong  Wang  Xiaofan  Xiao  Xuehan  Han  Liqiang  Zhang  Kunpeng  Wang  Jiang  Yang  Guoyu 《Biotechnology letters》2021,43(11):2111-2129
Biotechnology Letters - An ideal rAAV gene editing system not only effectively edits genes at specific site, but also prevents the spread of the virus from occurring off-target or carcinogenic...  相似文献   
78.
Oral leukoplakia (OL) is the most common premalignancy in the oral cavity and can progress to oral squamous cell carcinoma (OSCC). SMAD4 is a tumor suppressor implicated in multiple cancer types including OSCC. To assess the role of SMAD4 in oral leukoplakia malignant transformation, the authors investigated SMAD4 expression patterns in OL and OSCC using a highly specific antibody and correlated the patterns with the risk of malignant transformation oral leukoplakia. Immunohistochemistry and a quantitative imaging system were used to measure SMAD4 expression in OL from 88 OL patients, including 22 who later went through malignant transformation, and their OSCC counterpart. Forty-three (48.9%) of the 88 OL patients had strong SMAD4 expression. SMAD4 expression had no significant correlation with patients'' clinicopathological parameters. Interestingly, 17 (39.5%) of the 43 OL lesions with strong SMAD4 expression went through malignant transformation whereas only 5 (11.1%) of the 45 OL lesions with weak SMAD4 expression did so (p = 0.002). The SMAD4 expression in OL was much higher than that in their OSCC counterpart. Kaplan-Meier analysis revealed that the combination of SMAD4 expression and histological grade of dysplasia (p = 0.007) is a better predictor for the malignant transformation of oral leukoplakia. In the multivariate analysis, both SMAD4 expression and grade of dysplasia were identified as independent factors for OL malignant transformation risk (p = 0.013 and 0.021, respectively). It was concluded that high SMAD4 expression may be indicative of an early carcinogenic process in OL and serve as an independent biomarker in assessing malignant transformation risk in patients with OL, and the combination of SMAD4 expression and histological grade of dysplasia is a better predictor for the malignant transformation of oral leukoplakia.  相似文献   
79.
Rotifers are useful model organisms for aging research, owing to their small body size (0.1–1 mm), short lifespan (6–14 days) and the relative easy in which aging and senescence phenotypes can be measured. Recent studies have shown that antioxidants can extend the lifespan of rotifers. In this paper, we analyzed changes in the mRNA expression level of genes encoding the antioxidants manganese superoxide dismutase (MnSOD), copper and zinc SOD (CuZnSOD) and catalase (CAT) during rotifer aging to clarify the function of these enzymes in this process. We also investigated the effects of common life-prolonging methods [dietary restriction (DR) and resveratrol] on the mRNA expression level of these genes. The results showed that the mRNA expression level of MnSOD decreased with aging, whereas that of CuZnSOD increased. The mRNA expression of CAT did not change significantly. This suggests that the ability to eliminate reactive oxygen species (ROS) in the mitochondria reduces with aging, thus aggravating the damaging effect of ROS on the mitochondria. DR significantly increased the mRNA expression level of MnSOD, CuZnSOD and CAT, which might explain why DR is able to extend rotifer lifespan. Although resveratrol also increased the mRNA expression level of MnSOD, it had significant inhibitory effects on the mRNA expression of CuZnSOD and CAT. In short, mRNA expression levels of CAT, MnSOD and CuZnSOD are likely to reflect the ability of mitochondria to eliminate ROS and delay the aging process.  相似文献   
80.
Background aimsPre-clinical evidence indicates that autologous bone marrow-derived mesenchymal stromal cell (BM-MSC) transplantation improves motor function in patients with central nervous system disorders.MethodsAfter providing informed consent, 52 patients with cerebral palsy (CP) who met the study criteria received BM-MSC transplantation. Gross motor function was assessed using the Gross Motor Function Measure (GMFM)-88 and GMFM-66 scales at baseline (before transplantation) and at 1 month, 6 months and 18 months post-transplantation. The participants completed the trial without visible side effects. The GMFM-66 percentile (motor growth curves) was used as the control index of motor function to exclude the interference of improvement with age.ResultsThe score domains A, B, C and D and the total GMFM-88 and GMFM-66 scores in participants increased at 1 month, 6 months and 18 months post-transplantation compared with the baseline value (P < 0.01). The scores of domain E also increased at 6 months and 18 months post-transplantation, although they were not significantly increased at 1 month post-transplantation. There were significant increases in the GMFM-66 score and the GMFM-66 percentile corresponding to patient age and Gross Motor Function Classification System level after cell transplantation.ConclusionsAutologous BM-MSC transplantation appears to be a feasible, safe and effective therapy for patients with CP. The treatment improved the development of children with CP with regard to motor function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号